Mobile IP, its extensions and practical use cases

Nordunet 2002

Tom Weckström

Lifix Systems Oy

Contents

- Speaker's introduction
- Mobile IP introduction
- Mobile IP's benefits
- Mobile IP penetration
- Extensions of the base Mobile IP protocol
- Subjective extension hot list
- Example1: Hierarchical MIPv4
- Example2: Mobile IP Proxy
- Mobile IP use cases
- Future visions

Speaker's introduction

Tom Weckström

- ✓ Mobility management research at HUT since 1998
- ✓ Dynamics HUT Mobile IP project manager
- ✓ M.Sc.(Tech.) from HUT
- ✓ CTO at Lifix Systems

Lifix Systems provides technology for the mobile generation

- ✓ Mobility management software provider
- ✓ Mobile IP product Lifix[™] Go!
- ✓ Extensions to the standard (e.g., hierarchical MIP)
- ✓ Integration to the related technologies (e.g. AAA)

Mobile IP standardisation

- Coordinated by IETF
 - ✓ Mobile IP Working Group (MIP WG)
 - ✓ MIP WG is located in the Internet Area of IETF
- Open standardisation process
 - √ WG mailing list
 - ✓ IETF meetings
- 1996: Mobile IPv4 (RFC 2002)
- 2002: Mobile IPv4, revised (RFC 3220)
- ETA 2002: Mobile IPv6 as an RFC

Mobile IPv4 components

Home Agent (HA)

✓ An infrastructure routing component that keeps track of the mobile nodes' locations and forwards traffic to them.

Foreign Agent (FA)

✓ An infrastructure routing component that offers routing services for mobile nodes arriving to foreign networks.

Mobile Node (MN)

✓ A client component installed in the mobile device.

Correspondent Node (CN)

✓ A reference point. Communicates with the MN.

Mobile IPv4 architecture & protocol

Benefits of Mobile IP

Nordunet 2002 Tom Weckström

- Independence of access technology
- All IP → Unlimited content
- Global, mature standard

Benefits for the end user

Seamless mobility

- ✓ Location privacy
- ✓ No need for additional intelligence in the communicating peers (CNs)
- ✓ No need for additions to applications
- ✓ No need for application restarts/re-logins, OS reboots, manual network access configuration, VPN connection restarts, etc.

Global reachability with IP via one home address

✓ Ideal for a number of applications (messaging, email, VoIP) and security (corporate firewall).

Status of Mobile IP penetration globally

- Mobile IPv4 used in and implemented by, e.g.
 - ✓ Part of 3GPP2 (1xRTT CDMA2000) specification
 - ✓ HW e.g. from Lucent, Nortel, Cisco, Motorola, 3Com,...
 - ✓ SW e.g. from Lifix Systems, ipUnplugged, Birdstep,...
 - ✓ Growing penetration as a part of companies' Internet solutions

Mobile IPv6

- ✓ Coming to 3GPP (UMTS W-CDMA) specification
- ✓ HW e.g. from Nokia, Ericsson, Alcatel, Lucent,...
- ✓ SW mainly for research purposes, e.g. HUT's MIPL
- ✓ Penetration mainly in lab and demo environments

Extensions of the base Mobile IP protocol

- ~8 MIP WG RFCs for MIP extensions, e.g.
 - ✓ Mobile IP NAI Extension for IPv4 (RFC 2794)
 - ✓ Mobile IP Challenge/Response Exts (RFC 3012)
 - ✓ Mobile IP Vendor/Org. -Specific Exts (RFC 3115)
- ~14 MIP WG Internet Drafts for MIP extensions, e.g.
 - ✓ Mobile IPv4 Regional Registration
 - ✓ Hierarchical MIPv6 mobility management
 - ✓ Fast Handovers for Mobile IPv6
 - ✓ Low latency Handoffs in Mobile IPv4
 - ✓ Requirements of a QoS Solution for Mobile IP
 - ✓ Mobile IP NAT/NAPT Traversal
- A number of personal Internet Drafts regarding MIP

Subjective MIP extension Hot list

- MIPv6 in general, getting it to RFC
- MIPv6 security
- ➡ Hierarchical MIPv4 (and v6) → Example 1
- Fast handoffs, low latency
- AAA (RFC2977 + drafts)
- Ease of use and administration: NAI (RFC2794), Challenge response (RFC3012 +drafts)
- Use of IPv4 private address space with MIP
- MIPv4 NAT, NAPT and VPN traversal
- Mobile IPv4 Proxy → Example 2

Example 1: Hierarchical MIPv4

- 1998: 2-level hierarchical implementation and draft by NUS
- Several drafts since 1999
- 1999: Dynamics HUT Mobile IP implementation
 - ✓ Multi-level FA hierarchy
 - ✓ 2-level HA hierarchy in 2000
- 1999: Regional Registrations draft
 - ✓ IETF last call 4/2002
- 2002: Hierarchical extensions in Lifix Go!
- Benefits of a hierarchical solution
 - ✓ Fast handoffs, up to 20 handoffs per second (Dynamics 1999)
 - Ability to support glitchless real-time data
 - ✓ Support for private addresses within the hierarchy
 - ✓ Geographical and topological scalability
 - ✓ Optimised signaling load

Hierarchical MIPv4 architecture example

Fast handoffs within the FA hierarchy

- The change of routes is localized to the nearest possible FA.
- Mobility within a hierarchy does not require slow signaling over the unreliable, possibly slow, global internet.

Scalability

- The hierarchical solution scales well geographically.
- Adding branches to the hierarchy is easy.
- Scalability enables new operator and service provider business models.

Support for private addresses

- Only the hosts marked with red need a public IP address.
- Additing a complete sub-hierarchy does not require any more public IP addresses.

LIFIX

Example 2: Mobile IP Proxy

- Real world requirements / problem statement
 - ✓ Seamless mobility in the intranet and from the internet
 - ✓ IPSec in MIP tunneling from the Internet
 - ✓ Plain MIP tunneling in the intranet
 - ✓ Minimal changes in the existing MIP
- Where to place the HA?
 - ✓ Mobile IP Proxy solves the problem

MIP Proxy deployed

Where can Mobile IP be used?

LIFIX GO!

How mobile can you get?

How mobile can you get?

Visions for the future

- The networking environment is getting even more heterogeneus
 - ✓ The number of link layer technologies is growing
- "Always connected" culture
 - ✓ A completely new wolrd of Internet for businesses and individuals
- MIP –enabled PDAs
 - ✓ From off-line calendar to always connected Internet phone or business application toolkit
- MIP will be there, but you will not notice it
 - ✓ Mobile IP is enabling 3G IP services

References

- IETF
 - ✓ http://www.ietf.org/
- MIP WG
 - ✓ http://www.ietf.org/html.charters/mobileip-charter.html
- Lifix Systems
 - ✓ http://www.lifix.fi
- Dynamics Group
 - √ http://www.cs.hut.fi/Research/Dynamics/
- 3GPP2
 - √ http://www.3gpp2.org/
- 3GPP
 - √ http://www.3gpp.org/
- National University of Singapore, NUS
 - √ http://www.nus.edu/

Contact Info

Lifix Systems Oy
Yliopistonkatu 5, 3rd floor
00100 Helsinki
Finland
http://www.lifix.fi

Tom Weckström, CTO tom.weckstrom@lifix.fi